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Abstract
The symmetric two-layer Ising model (TLIM) is studied by the corner transfer
matrix renormalization group method. The critical points and critical exponents
are calculated. It is found that the TLIM belongs to the same universality class
as the Ising model. The shift exponent is calculated to be 1.773, which is
consistent with the theoretical prediction of 1.75 with 1.3% deviation.

PACS numbers: 05.50.+q, 02.70.-c

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The two-layer Ising model (TLIM), as a simple generalization of the two-dimensional Ising
model and a simple model for the magnetic ultra-thin films, has been studied for a long
time [1–6]. Cobalt films grown on a Cu(100) crystal, for instance, have highly anisotropic
magnetization [7] and could therefore be viewed as layered Ising-spin systems. It has been
found that capping PtCo in TbFeCo to form a two-layer structure has applicable features, for
instance, raising the Curie temperature and reducing the switching fields for over-writable
magneto-optical disks [8]. Apart from various possible applications to real physical materials,
the model is theoretically interesting for its rich phase structure. The model has several
interesting equivalents, such as a two-species gauge invariant Ising model [9], a spin- 3

2 Ising
model [10], a model of the dilute lattice gas and a quantum spin- 1

2 ladder at zero temperature.
The TLIM is important for the investigation of crossover from the two-dimensional Ising model
to the three-dimensional one. In particular, it has been argued that the critical point of the latter
could be found from the spectrum of the TLIM [11].
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In recent years, some approximation methods have been applied to this model [10,12–18].
A critical line has been found in all these studies. As expected, the Curie temperature is
very sensitive to the inter-layer interaction. Many discussions have been directed to the shift
exponent at the decoupling point. Abe [3] and Suzuki [4] predicted γ = 7/4 for the isotropic
model many years ago. Only in recent years have the computational results converged to the
prediction, with still about 2.3% deviation [16, 17].

Apart from the shift exponent, it is also interesting to study the critical behaviour along
the critical line. The model has the same critical exponents at the two ends of the critical
line corresponding to the solvable decoupling limit and the infinite-interlayer-coupling limit,
but it is clear that the decoupled system has a higher symmetry than the coupling layers,
hence one cannot assume a priori that the TLIM belongs to the one-layer Ising universality
class. Unusual finite-size effects have been observed in the dynamic process [19]. It has
been proposed that the critical exponents (or some of them) would vary continuously along
the critical line [9, 17]. However, there are also arguments in favour of unchanged exponents.
Based on their correlation length equality method, Angelini et al [13] argued that the exponent
ν is a constant. The accurate computation of critical exponents along the critical line remains
a difficult unsolved problem.

It is our purpose to provide a reliable prediction for the critical exponents based on the
corner transfer matrix renormalization group (CTMRG) method [20–22].

The CTMRG method follows White’s idea of the density matrix renormalization group [23,
24]. It reduces the phase-space dimensions by omitting the eigenstates corresponding to small
eigenvalues of the density matrix, but instead of constructing the density matrix through a
series of column transfer matrices, Nishino and Okunishi made use of the corner transfer
matrices. The CTMRG method has shown many merits for the two-dimensional classical
models which can be mapped into interaction-around-face (IRF) models. Since the system
can be easily extended to very large lattices, the finite-size effect can be ignored. The error
mainly originates from the finite dimensions of the renormalized phase space, which only
becomes severe for huge lattices at or very close to the critical point. Numerically it has
been observed that the extrapolation from the finite-size scaling can provide very accurate
information about the criticality.

We will focus on the TLIM composed of two identical layers. In this case, the model
has a symmetry of interchanging the spins of the two layers. This symmetry is vital to
the critical behaviour of the model. A breakdown of universality due to a small symmetry
breaking [17] has been observed. In order to keep this symmetry, special care should be taken
in the programming. Technically, the symmetry reduces the dimensions of the transfer matrix
remarkably, but the extra degeneracy will slow down the convergence of the iteration, which
makes the problem much more difficult compared to the one-layer Ising model.

The critical behaviour can be easily observed in various quantities, such as the rapid
increase of the magnetization, the lambda peak of the capacity and the anomalous slowing
down of convergence of the renormalization group iterations. However, to calculate the critical
exponents, one needs to locate the critical points to high precision. This is done by a careful
extrapolation of the renormalization dimension m.

In section 2, the TLIM is defined and transformed into an IRF model which is suitable
for the CTMRG study. In the same section, the CTMRG method particular for the considered
model will be introduced. The finite-size scaling and the finite-renormalization-dimension
effect is studied in section 3. At the same time as the critical points are located, critical
exponents of the scaling law are computed. Results for the critical exponents η and ν can also
be found in section 3. Discussions and conclusions are given in the last section.
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Figure 1. (a) A full vertex weight Wabcd ; (b) an edge vertex weight Wabc; (c) a corner vertex
weight Wab .

2. The CTMRG method for the TLIM

The Hamiltonian of the model is defined by

H = −J1

∑
〈i,j〉

sisj − J2

∑
〈i,j〉

σiσj − λ
∑
i

siσi (1)

where si = ±1 and σi = ±1 are Ising spins on two identical square lattices. For concreteness,
let us say, si is at the site i of layer 1 and σi is at the corresponding site of layer 2, which
is also labelled by i. Then 〈i, j〉 should be understood as a nearest-neighbour pair of sites
on either layer 1 or 2, depending on which of the spin variables, s or σ , is concerned. In
this paper, we only discuss the symmetric ferromagnetic case with nearest-neighbour coupling
J1 = J2 = J > 0 and with interlayer coupling λ = ρJ > 0.

To obtain the equivalent IRF model, two species of Ising spins, uij = ±1 and vij = ±1,
are introduced for each link 〈i, j〉. The Hamiltonian (1) is generalized to

H ′ = −J ′
[ ∑

〈i,j〉
uij (si + sj ) +

∑
〈i,j〉

vij (σi + σj ) + ρ ′ ∑
i

siσi

]
(2)

where J ′ and ρ ′ are defined as

J ′ = 1
2 ln

(
e2J +

√
e4J − 1

)
(3)

ρ ′ = ρJ

J ′ . (4)

It is not difficult to show that, by summing over all u- and v-spins, the TLIM is recovered
apart from a overall irrelevant constant factor to the partition function. Inversely, if the s- and
σ -spins are summed, one will obtain the IRF model with four u-spin interactions and four
v-spin interactions around each vertex. The vertex weight of the IRF model is given by

Wabcd =
∑

s,σ=±1

exp
{
J ′[s(ua + ub + uc + ud) + σ(va + vb + vc + vd) + ρ ′sσ

]}
(5)

where a, b, c and d denote the four (u, v)-spin pairs in the links joining to the vertex. Special
weights in the boundary, which have links less than four, can be defined in a similar way as (5)
but the values of s and σ are subject to the boundary condition. For instance, for the fixed
boundary condition, the weight along the boundary, Wabc, is defined by

Wabc = exp
[
J ′(ua + ub + uc + va + vb + vc + ρ ′)]. (6)

The vertex at the corner has a weight

Wab = exp
[
J ′(ua + ub + va + vb + ρ ′)]. (7)

They are schematically given in figures 1(a)–(c), respectively.
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Figure 2. (a) A CTM, Cαβ(2); a half-row transfer
matrix (HRTM), Pαβ,a(2).

Figure 3. Enlarging Cαβ(2) into Cαβ(3).

The partition function is a trace of products of all vertex weights. The trace here means
to sum over all spins. In the following, whenever two vertices are connected by a link, a
summation over the (u, v)-spin pair in that link is implied. The vertex weights of a quarter
lattice, after summation over all inner spins and boundary spins as it has been implied, is
called a corner transfer matrix (CTM), denoted by Cαβ(N). Here α and β denote the spin
configurations of two open sides of the corner respectively, and N is the size of the corner. A
schematic representation for a CTM is given in figure 2(a).

Another matrix we need is the so-called half-row transfer matrix (HRTM) denoted by
Pαβ,a(N). It is defined by the recursion relation

Pαβ,a(N) =
∑
c

WabcdPα′β ′,c(N − 1) (8)

Pbc,a(1) = Wabc (9)

where α′ and β ′ are spin configurations of two sides of the HRTM with size of (N−1); c is the
(u, v)-spin pair of the top of that HRTM and α and β are spin configurations of the enlarged
HRTM with α representing (α′, b) and β representing (β ′, d) respectively. For each value of
a, Pαβ,a(N) can also be considered as a matrix, denoted by Pa(N). Figure 2(b) is an example
of the HRTM.

In the process of the CTMRG iterations, the size of CTM is enlarged by one lattice spacing
each time. This is done in the following way: (1) glue a HRTM to each open side of the CTM,
(2) complement the bigger corner by adding a vertex weight. The recursion relation is

Cαβ(N) =
∑
α′′β ′′

∑
cd

WabcdPα′β ′′,c(N − 1) · Cα′′β ′′(N − 1)Pα′′β ′,d (N − 1). (10)

It is schematically shown in figure 3.
By use of the CTM, the partition function of an even size lattice is simply the trace of the

CTM to power four

Z2N = Tr(C(N)4). (11)

Therefore, the CTM and the density matrix have common eigenvectors. Denote the eigenvalues
of C by {ωk|k = 0, 1, 2, . . .}, assuming that ω0 � ω1 � ω2 � · · · , the eigenvalues of the
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density matrix are {ω4
k |k = 0, 1, 2, . . .}. According to the spirit of DMRG, only a certain

number of the largest eigenstates will be kept. For instance, the first m eigenstates are
kept; the eigenstates with smaller eigenvalues {ωk|k > m} are ignored. m is the so-called
renormalization dimension.

The CTMRG iterations contain the following steps: (i) construct C(N) of a small CTM
which is small enough to be exactly diagonalized; (ii) construct Pa(N); (iii) diagonalize
C(N); (iv) if the dimension ofC(N) is smaller thanm, all eigenstates are used as a basis of the
renormalized phase space, otherwise only m eigenstates with the biggest eigenvalues are used
as the basis; (v) by use of the eigenvectors which have been chosen for the renormalized space,
form a projection operator U(N) that projects old spin states into the renormalized space;
(vi) use U(N) to project Pa(N) to the renormalized HRTM P r

a (N); (vii) form a diagonal
matrix Cr(N) by the first m largest eigenvalues, which is the renormalized CTM; (viii) use
P r
a (N),C

r(N) and the vertex weightW to form a bigger CTM,C(N +1), and a bigger HRTM,
P(N + 1), and repeat the above procedure from step (iii) with N replaced by N + 1.

Since the renormalized phase space has dimension �m, the CTMRG in principle can go
on infinitely. Therefore the lattice can be easily enlarged to very large sizes.

Particularly for the TLIM, it is efficient to choose the basis to be symmetric and
antisymmetric in the exchange of two layers. In this way, the CTM is automatically block
diagonal. The symmetric block and the antisymmetric block can be diagonalized separately.
This is not just allowing larger m and high precision, but is also essential for keeping the
presumed symmetry between two layers.

For small interlayer coupling, there are many approximate degenerate eigenstates due to
the layer symmetry. If one does not separately consider the symmetric and antisymmetric
phase space, it is easy to destroy the layer symmetry in the renormalization procedure.

Following the method of Nishino and Okunishi [20], the magnetization M can be
calculated on an odd size lattice which is constructed by inserting an HRTM matrix between
two adjacent CTM matrices and adding a proper vertex at the lattice centre. The probability
that the central site has a spin state (s, σ ) is given by

Msσ =
∑

abcd X
sσ
abcd Tr

(
P r
a C

rP r
b C

rP r
c C

rP r
d C

r
)

∑
abcd Wabcd Tr

(
P r
a C

rP r
b C

rP r
c C

rP r
d C

r
) (12)

where Xsσ
abcd is defined by

Xsσ
abcd = exp

{
J ′[s(ua + ub + uc + ud) + σ(va + vb + vc + vd) + ρ ′sσ

]}
. (13)

The magnetization of layer 1, M = 〈s〉, is

M = M++ +M+− −M−− −M−+. (14)

Due to the layer symmetry, it is also one-half of the total magnetization. The local energy
density E can be calculated in a similar way.

E =
∑

abcd Yabcd Tr
(
P r
a C

rP r
b C

rP r
c C

rP r
d C

r
)

∑
abcd Wabcd Tr

(
P r
a C

rP r
b C

rP r
c C

rP r
d C

r
) (15)

where

Yabcd =
∑
s,σ

Xsσ
abcd ln(Xsσ

abcd). (16)
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Figure 4. Schematic plot of the ideal curves ∂ lnM/∂ lnL versus lnL.

3. Extrapolation and finite-size scaling

At the critical point Jc, it is expected thatM obeys the finite-size scaling formM ∼ L−(d−2+η)/2,
where L is the lattice size, so

lnM(L) = const − d − 2 + η

2
lnL. (17)

If we calculate ∂ lnM/∂ lnL and plot it with lnL as the horizontal axis, the curve should
be a horizontal line for the critical point Jc with the vertical value of the line as −(d−2 +η)/2.
For J near Jc, there should be deviations from the power-law behaviour. A simple physics
consideration reveals that the curves should be in the form shown in figure 4. So by searching
for the ‘best’ horizontal line, one can determine the critical point Jc as well as the critical
exponent η.

Things are not so easy, however. Figure 5 shows the curves of ∂ lnM/∂ lnL against lnL
for ρ = 0.1, J = 0.397 726 with different renormalization dimensionsm. This J value is quite
near to Jc. For small L, there exists a region where the lattice size is too small and finite-size
scaling has not come into play. We will refer to this region as the small-size region. As L
increases, the number of states of the system increases while the renormalization dimensionm
remains unchanged, and we will suffer from the ‘finite-m effect’ in due time. To obtain a more
complete knowledge of the finite-m effect, let us look at figure 6, where curves for different
J with m = 60 are shown. m = 60 is relatively small in our calculation and it has a more
drastic finite-m effect. WhenL is small, all three curves shown in figure 6 increase, which is an
indication of the small-size effect. After a certain value of L, one of the curves begins to bend
down and the other two become much flatter. Here the critical behaviour dominates. However,
the finite-m effect soon shows itself by raising the curves, which is also demonstrated clearly in
figure 5. As a result, only approximately the part inside the dotted-line box resembles figure 4.
It is hard to tell exactly where the finite-m effect begin to dominate without comparison with
curves of higher m.

Nevertheless, some useful information can be drawn from the analysis. If a curve bends
down for a period ofL, one can judge that it corresponds to a J that is smaller than Jc. In other
words, if a curve has a local maximum, it corresponds to a J with J < Jc. Thus the point
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Figure 5. ∂ lnM/∂ lnL plotted versus lnL for ρ = 0.1, J = 0.397 726. The solid curves are for
m = 60, 80, 120, 240. The dashed curve is the result of an extrapolation to m → ∞.
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ln L
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-0,14
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-0,11

-0,10

∂ 
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 / 

∂ 
ln
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0.3977312

0.3977212

0.3977112

Figure 6. ∂ lnM/∂ lnL plotted versus lnL for ρ = 0.1, m = 60, for three different values of J .

now is to find J (60)
c , above which the corresponding curve has no local maximum and below

which it has. J (60)
c can be understood as a lower limit for Jc. In general, one can obtain J (m)c

as an estimate of Jc. The former will approach the latter from below as m → ∞. Meanwhile
the vertical value of the horizontal part of the curve with J = J

(m)
c gives the estimate for

(d − 2 + η)/2. To make the above discussion simpler, we have limited it only to the case with
behaviour similar to that of ρ = 0.1. Later we will see in figure 7 that the small-size effect
may show itself differently as ρ changes. However, similar analyses can still be developed for
other cases.

In most of our calculations, we chose m to be 60, 80, 120 and 240. For each m, we
calculated the magnetization with a set of J values and then determined the critical point using
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Figure 7. ∂ lnM/∂ lnL plotted versus lnL for J = Jc with ρ = 1.0, 0.4, 0.1 from above,
respectively.

Table 1. The critical point and critical exponent (d − 2 + η)/2 at ρ = 0.1 estimated through first
looking for the flattest curve of ∂ lnM/∂ lnL ∼ lnL for a certain m then extrapolating to infinite
m.

m J
(m)
c (d − 2 + η)/2

60 0.397 7212 0.126 29
80 0.397 7230 0.126 20

120 0.397 7252 0.125 48
240 0.397 7260 0.125 29

∞ 0.397 7264 0.125 20

the method described above. The results for ρ = 0.1 are shown in table 1. The last row shows
the extrapolated values for m = ∞.

An alternative and finer way for dealing with the finite-m problem is to extrapolate the
data to m → ∞ first and then analyse the extrapolated data. The extrapolation should lead to
reasonable and smooth curves form = ∞, and we assume the data converge monotonically as
m → ∞. This defines our criterion for choosing the extrapolation formula. We still take as an
example the case with J = 0.397 726, ρ = 0.1, whose curves are plotted in figure 5. For each
value of lattice size L, we fit the points (1/m,M(m)(L)), where m = 60, 80, 120, 240, with

y = a5x
5 + a4x

4 + a3x
3 + a0. (18)

a0 then is considered to be the value form = ∞ (see figure 8). Equation (18) does not include
terms of x1 and x2 because including them violates the criteria above. The extrapolated curve
is also shown in figure 5 as a dashed line.

Now that we have obtained the curves for m = ∞ with different J , we can search for
the J value whose ∂ lnM/∂ lnL ∼ lnL curve is closest to a horizontal line. This J value is
then the estimate of Jc. In our calculation, we use an interpolation technique to help locate
the ‘best’ J , as shown in figure 9. The solid lines are those extrapolated to infinite m. We
can obtain the magnetization for any value of J that is between J = 0.397 726, for which the
curve bends down, and J = 0.397 727, where the line bends up, by linear interpolation. We
found Jc to be 0.397 7262 with (d − 2 + η)/2 = 0.125 07.
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Figure 8. Extrapolation from m = 60, 80, 120, 240 for J = 0.397 726, ρ = 0.1 and L = 2001.
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Figure 9. ∂ lnM/∂ lnL plotted versus lnL for ρ = 0.1. The solid lines are the extrapolated curves
for J = 0.397 726 and J = 0.397 727. The dashed line is obtained from an interpolation between
the two values of J .

The small-size effect for different ratios is presented in figure 7. For small ρ, this effect
is big. In the case of ρ = 0.1, for instance, the small-size effect is visible with L up to 800.
However, it seems that we overcome the small-size effect with L = 2000.

Having Jc in hand, we can determine another critical exponent ν through the finite-size
scaling form of the energy density

E(L)− E∞ ∼ L−(d− 1
ν
). (19)

The critical point Jc, critical exponents (d − 2 + η)/2 and d − 1
ν

for ρ = 0.1, 0.4 and 1.0
are collected in table 2.

For small ρ, the critical point Jc(ρ) follows a power law Jc(ρ) − Jc(0) ∼ ρ1/ψ with ψ
the so-called shift exponent. With critical points for two small ρ in hand, the shift exponent
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Table 2. Critical point Jc and critical exponents for ρ = 0.1, 0.4 and 1.0, estimated through first
extrapolating the curve of ∂ lnM/∂ lnL ∼ lnL for infinite m then looking for the flattest curve.

ρ J
(∞)
c (d − 2 + η)/2 d − 1

ν

0.1 0.397 7262 0.125 07 1.0014
0.4 0.354 1412 0.125 03 1.0001
1.0 0.311 7577 0.125 02 0.9996

0 0,2 0,4 0,6 0,8 1

J

0

0,2

0,4

0,6

0,8

1

ex
p(

-1
/λ

)

ratio=0.005
ratio=0.01
ratio=0.1
ratio=0.1
ratio=0.4
ratio=1.0

Figure 10. The RG trajectories mapped to the TLIM parameter space are plotted. The vertical axis
is exp(−1/λ) with λ = ρJ . Corresponding to the curves in the order of the legend, the starting
couplings are J = 0.477, 0.438, 0.438, 0.439, 0.42 and 0.35, respectively.

can be estimated by

ψ = ln

(
ρ1

ρ2

) /
ln

(
Jc(ρ1)− Jc(0)

Jc(ρ2)− Jc(0)

)
(20)

where Jc(0) is known as the critical point of the one-layer Ising model. For ρ = 0.005 and
0.01, we find the critical points Jc = 0.432 507 and 0.428 593, respectively, which lead to
ψ = 1.773, consistent with the theoretical prediction ψ = γ = 1.75 within 1.3% deviation.

4. Discussion and conclusions

Our numerical results suggest that the TLIM model is in the Ising universality class. That is,
for a finite interlayer coupling, the critical behaviour of the TLIM is the same as that of the
one-layer system. Both 〈s〉 and 〈σ 〉 are order parameters in the transition. Our observations
strongly exclude a phase transition for the electric order, except at the decoupling point ρ = 0.

The critical line of the TLIM is in fact not a fixed line since the interlayer coupling is a
relevant interaction, which should flow to infinity in renormalization group transformations.
Then the TLIM resembles the one-layer Ising model in the long-range critical behaviour. To
confirm this picture, we also carry out the real-space renormalizational group transformation to
the model. The lattice is divided into 3×3 blocks. All nearest-neighbour interactions are kept.
The RG trajectories are plotted in figure 10. Two attractive fixed points both having infinite ρ
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are observed. They are the ordered and disordered fixed points, respectively. Figure 10 shows
that the renormalization trajectories always flow to infinite ρ except for that starting at ρ = 0,
which remains zero and corresponds to the one-layer Ising fixed point Jc(0). The trajectory
which flows from Jc(0) to Jc(∞) = Jc/2 and which separates two attractive points should be
the critical line obtained in the present and previous papers. Therefore we conclude that there
is no fixed line for finite ρ.

However, as the interlayer coupling is small, it needs a large scale transformation to reach
the infinite fixed points, so the model has extraordinarily large finite-size effects, as we have
observed in the numerical results.

The decoupling limit shows singularities due to the existence of the severe competition
between the unstable decoupling fixed point and the attractive infinite interlayer coupling fixed
points, which, however, are far away. This is supported in some sense by the unusual sensitivity
of the shift exponent to the couplings [16, 17] and the strange layer symmetry breaking in the
effective state at the decoupling limit [14]. Our estimate for the shift exponent is consistent
with the theoretical prediction.

The unusual small-size effects will have important consequences for the local properties of
the TLIM. These are manifested in the short-time critical behaviour that we recently observed
in Monte Carlo simulations, which will be reported elsewhere [19].
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